

Overview & Introduction to Basic Spack Concepts

Todd Gamblin Center for Applied Scientific Computing

Spack is a flexible package manager for HPC

How to install Spack:

```
$ git clone https://github.com/scalability-llnl/spack.git
```

How to install a package:

```
$ cd spack/bin
$ ./spack install hdf5
```

- HDF5 and its dependencies are installed within the Spack directory.
- No additional setup required!

What is the production environment for HPC?

- Someone's home directory?
- LLNL? LANL? Sandia? ANL? LBL? TACC?
 - Environments at large-scale sites are very different.
- Which MPI implementation?
- Which compiler?
- Which dependencies?
- Which versions of dependencies?
 - Many applications require specific dependency versions.

Real answer: there isn't a single production environment or a standard way to build.

HPC software is becoming increasingly complex

- Not much standardization in HPC
 - every machine/application has a different software stack
- Sites share unique hardware among teams with very different requirements
 - Users want to experiment with many exotic architectures, compilers, MPI versions
 - All of this is necessary to get the best performance
- Example environment for some LLNL codes:

We want an easy way to quickly sample the space, to build configurations on demand!

Most existing tools do not support combinatorial versioning

- Traditional binary package managers
 - RPM, yum, APT, yast, etc.
 - Designed to manage a single stack.
 - Install one version of each package in a single prefix (/usr).
 - Seamless upgrades to a stable, well tested stack
- Port systems
 - BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
 - Minimal support for builds parameterized by compilers, dependency versions.
- Virtual Machines and Linux Containers (Docker)
 - Containers allow users to build environments for different applications.
 - Does not solve the build problem (someone has to build the image)
 - Performance, security, and upgrade issues prevent widespread HPC deployment.

Spack handles combinatorial software complexity.

Dependency DAG

- Each unique dependency graph is a unique configuration.
- Each configuration installed in a unique directory.
 - Configurations of the same package can coexist.
- Hash of entire directed acyclic graph (DAG) is appended to each prefix.
- Installed packages automatically find dependencies
 - Spack embeds RPATHs in binaries.
 - No need to use modules or set LD LIBRARY PATH
 - Things work the way you built them

`spack list` shows what packages are available

<pre>\$ spack list ==> 308 packages.</pre>										
activeharmony	cfitsio	fftw	gsl	libffi	matio	ompt-openmp	py-basemap	py-pil	py-virtualenv	szip
adept-utils ´	cgal	fish	gtkplus	libgcrypt	mbedtls	opari2	py-biopython	py-pillow	py-wheel	tar [']
apex	cgm	flex	harfbuzz	libgd	memaxes	openblas	py-blessings	py-pmw	py-yapf	task
arpack	cityhash	fltk	hdf	libgpg-error	mesa	openmpi	py-cffi	py-pychecker	python	taskd
asciidoc	cleverleaf	flux	hdf5	libjpeg-turbo	metis	openspeedshop	py-coverage	py-pycparser	qhull	tau
atk	cloog	fontconfig	hpx5	libjson-c	Mitos	openssl	py-cython	py-pyelftools	qt	tcl
atlas	cmake	freetype	hwloc	libmng	mpc	otf	py-dateutil	py-pygments	qthreads	texinfo
atop	cmocka	gasnet	hypre	libmonitor	mpe2	otf2	py-epydoc	py-pylint	R _	the_silver_searcher
autoconf	coreutils	gcc	icu	libNBC	mpfr	pango	py-funcsigs	py-pypar	ravel	thrift
automaded	cppcheck	gdb	icu4c	libpciaccess	mpibash	papi	py-genders	py-pyparsing	readline	tk
automake	cram	gdk-pixbuf	ImageMagick	libpng	mpich .	parallel-netcdf	py-gnuplot	py-pyqt	rose	tmux
bear	cscope	geos	isl	libsodium	mpileaks	paraver	py-h5py	py-pyside	rsync	tmuxinator
bib2xhtml	cube	gflags	jdk	libtiff	mrnet	paraview	py-ipython	py-pytables	ruby	trilinos
binutils	curl	ghostscript	jemalloc	libtool	mumps	parmetis	py-libxml2	py-python-daemon	SAMRAI	uncrustify
bison	czmq	git	jpeg	libunwind	munge	parpack	py-lockfile	py-pytz	samtools	util-linux
boost	damselfly	glib	judy	libuuid	muster	patchelf	py-mako	py-rpy2	scalasca	valgrind
bowtie2	dbus	glm	julia	libxcb	mvapich2	pcre	py-matplotlib	py-scientificpython	scorep	vim
boxlib bzip2	docbook-xml	global	launchmon lcms	libxml2 libxshmfence	nasm ncdu	pcre2 pdt	py-mock	py-scikit-learn	scotch	vtk
cairo	doxygen dri2proto	glog glpk	leveldb	libxslt	ncurses	pat petsc	py-mpi4py	py-scipy py-setuptools	scr silo	wget wx
caliper	dtcmp	• .	libarchive	llvm	netcdf	pidx	py-mx	py-shiboken		
callpath	dyninst	gmp amsh	libcerf	llvm-lld	netgauge	piax pixman	py-mysqldb1 py-nose	py-sip	snappy sparsehash	wxpropgrid xcb-proto
cblas	eigen	gnuplot	libcircle	lmdb	netlib-blas	pkg-config	py-numexpr	py-six	spindle	xerces-c
cbtds	elfutils	gnutls	libdrm	lmod	netlib-lapack	pmgr_collective	py-numpy	py-stx py-sphinx	spot	XZ
cbtf-argonavis	elpa	gperf	libdwarf	lua	netlib-scalapack	postgresql	py-pandas	py-sympy	sqlite	yasm
cbtf-krell	expat	gperftools	libedit	lwarp	nettle	ppl	py-pbr	py-tappy	stat	zeroma
cbtf-lanl	extrae	graphlib	libelf	lwm2	ninja	protobuf	py-periodictable	py-twisted	sundials	zlib
cereal	exuberant-ctags	graphviz	libevent	m4	ompss	py-astropy	py-pexpect	py-urwid	swig	zsh
		JF			· r==	r.yry	1.7 L L	F2	9	-

Spack provides a *spec* syntax to describe customized DAG configurations

```
$ spack install mpileaks
$ spack install mpileaks@3.3
$ gcc@4.7.3
$ custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
$ spack install mpileaks@3.3 =bgq
= cross-compile
```

- Each expression is a spec for a particular configuration
 - Each clause adds a constraint to the spec
 - Constraints are optional specify only what you need.
 - Customize install on the command line!
- Syntax abstracts details in the common case
 - Makes parameterization by version, compiler, and options easy when necessary

Spack Specs can constrain versions of dependencies

- Spack ensures one configuration of each library per DAG
 - Ensures ABI consistency.
 - User does not need to know DAG structure; only the dependency names.
- Spack can ensure that builds use the same compiler, or you can mix
 - Working on ensuring ABI compatibility when compilers are mixed.

Spack handles ABI-incompatible, versioned interfaces like MPI

- mpi is a virtual dependency
- Install the same package built with two different MPI implementations:

```
$ spack install mpileaks ^mvapich@1.9
$ spack install mpileaks ^openmpi@1.4:
```

Let Spack choose MPI version, as long as it provides MPI 2 interface:

```
$ spack install mpileaks ^mpi@2
```

Spack packages are simple Python scripts.

```
from spack import *
class Dyninst(Package):
                                                                                                                Metadata
    """API for dynamic binary instrumentation."""
   homepage = "https://paradyn.org"
   version('8.2.1', 'abf60b7faabe7a2e', url="http://www.paradyn.org/release8.2/DyninstAPI-8.2.1.taz")
                                                                                                                Versions and URLs
   version('8.1.2', 'bf03b33375afa66f', url="http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz")
   version('8.1.1', 'd1a04e995b7aa709', url="http://www.paradyn.org/release8.1/DyninstAPI-8.1.1.tqz")
                                                                                                                Dependencies
   depends_on("libelf")
   depends on("libdwarf")
   depends_on("boost@1.42:")
                                                                                                                Patches, variants (not shown)
   def install(self, spec, prefix):
       libelf = spec['libelf'].prefix
       libdwarf = spec['libdwarf'].prefix
       with working_dir('spack-build', create=True):
           cmake('...',
                 '-DBoost_INCLUDE_DIR=%s' % spec['boost'].prefix.include,
                 '-DBoost_LIBRARY_DIR=%s' % spec['boost'].prefix.lib,
                 '-DBoost NO SYSTEM PATHS=TRUE'
                                                                                                                Commands for installation
                 *std cmake aras)
           make()
           make("install")
                                                                                                                Access build config through
   @when('@:8.1')
   def install(self, spec, prefix):
                                                                                                                the spec parameter.
       configure("--prefix=" + prefix)
       make()
       make("install")
```

Variants allow optional dependencies

The user can define named variants (flags):

```
variant("python", default=False, "Build with python support")
depends_on("python", when="+python")
```

• And use them to install:

```
$ spack install vim +python
$ spack install vim -python
```

Dependencies may be optional according to other conditions:
 e.g., gcc dependency on mpc from 4.5 on:

```
depends_on("mpc", when="@4.5:")
```

DAG is not always complete before concretization!

Concretization fills in missing configuration details when the user is not explicit.

Abstract, normalized spec with some dependencies.

Concrete spec is fully constrained and can be passed to install.

spec.yaml

```
spec:
- mpileaks:
    arch: linux-x86 64
    compiler:
      name: acc
      version: 4.9.2
    dependencies:
      adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
      callpath: bah5f4h4d2n47mavcei2mtrnrivvxv77
      mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
    hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
    variants: {}
    version: '1.0'
- adept-utils:
    arch: linux-x86 64
    compiler:
      name: gcc
      version: 4.9.2
    dependencies:
      boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
      mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
    hash: kszrtkpbzac3ss2ixcikcorlavbnptp4
    variants: {}
    version: 1.0.1
- boost:
    arch: linux-x86 64
    compiler:
      name: gcc
      version: 4.9.2
    dependencies: {}
    hash: teesiv7ehpe5ksspiim5dk43a7anowla
    variants: {}
    version: 1.59.0
```

Detailed provenance is stored with the installed package

Spack builds each package in its own compilation environment

Use Case 1: Managing combinatorial installations

```
$ spack find
==> 103 installed packages.
-- linux-x86_64 / gcc@4.4.7 -----
ImageMagick@6.8.9-10
                    alib@2.42.1
                                      libtiff@4.0.3
                                                       pango@1.36.8
                                                                           at@4.8.6
SAMRAT@3.9.1
                                      libtool@2.4.2
                                                       parmetis@4.0.3
                    araphlib@2.0.0
                                                                           at@5.4.0
adept-utils@1.0
                    atkplus@2.24.25
                                      libxcb@1.11
                                                       pixman@0.32.6
                                                                           ravel@1.0.0
atk@2.14.0
                    harfbuzz@0.9.37
                                      libxml2@2.9.2
                                                       py-dateutil@2.4.0
                                                                           readline@6.3
boost@1.55.0
                    hdf5@1.8.13
                                      11vm@3.0
                                                       py-ipython@2.3.1
                                                                           scotch@6.0.3
cairo@1.14.0
                    icu@54.1
                                      metis@5.1.0
                                                       py-nose@1.3.4
                                                                           starpu@1.1.4
                                      mpich@3.0.4
callpath@1.0.2
                    ipea@9a
                                                       py-numpy@1.9.1
                                                                           stat@2.1.0
                    libdwarf@20130729
                                      ncurses@5.9
dyninst@8.1.2
                                                       py-pytz@2014.10
                                                                           xz@5.2.0
dyninst@8.1.2
                    libelf@0.8.13
                                      ocr@2015-02-16
                                                                           zlib@1.2.8
                                                       py-setuptools@11.3.1
fontconfig@2.11.1
                    libffi@3.1
                                                       py-six@1.9.0
                                      openssl@1.0.1h
freetype@2.5.3
                    libmng@2.0.2
                                      otf@1.12.5salmon
                                                       python@2.7.8
                    libpng@1.6.16
qdk-pixbuf@2.31.2
                                      otf2@1.4
                                                       ahull@1.0
-- linux-x86_64 / qcc@4.8.2 ------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729
                                                                  mpich@3.0.4
adept-utils@1.0.1 cmake@5.6
                              dyninst@8.1.2
                                                libelf@0.8.13
                                                                  openmpi@1.8.2
-- linux-x86 64 / intel@14.0.2 ------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4
-- linux-x86_64 / intel@15.0.0 ------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4
-- linux-x86_64 / intel@15.0.1 ------
                 callpath@1.0.2 libdwarf@20130729
adept-utils@1.0.1
                                                  mpich@3.0.4
boost@1.55.0
                 hwloc@1.9
                                libelf@0.8.13
                                                  starpu@1.1.4
```

- spack find shows all installed configurations
 - Multiple versions of same package are ok.
- Packages are divided by architecture/compiler.
- Spack also generates module files.
 - Don't have to use them.

Using the Spec syntax, Spack can restrict queries

```
$ spack find mpich
==> 5 installed packages.
-- linux-x86_64 / gcc@4.4.7 -----
mpich@3.0.4
-- linux-x86_64 / gcc@4.8.2 -----
mpich@3.0.4
-- linux-x86 64 / intel@14.0.2 ------
mpich@3.0.4
-- linux-x86_64 / intel@15.0.0 ------
mpich@3.0.4
-- linux-x86 64 / intel@15.0.1 -----
mpich@3.0.4
```

 Querying by package name retrieves a subset

The Spec syntax doubles as a query language to allow refinement of searches.

```
$ spack find libelf
==> 5 installed packages.
-- linux-x86_64 / gcc@4.4.7 ------
libelf@0.8.12 libelf@0.8.13
-- linux-x86_64 / gcc@4.8.2 ------
libelf@0.8.13
-- linux-x86_64 / intel@15.0.0 -----
libelf@0.8.13
-- linux-x86_64 / intel@15.0.1 -----
libelf@0.8.13
```

Query versions of libelf package

List only those built with Intel compiler.

```
$ spack find libelf %intel
-- linux-x86_64 / intel@15.0.0 -----
libelf@0.8.13
-- linux-x86_64 / intel@15.0.1 -----
libelf@0.8.13

$ spack find libelf %intel@15.0.1
-- linux-x86_64 / intel@15.0.1 -----
libelf@0.8.13
```

Restrict to specific compiler version

Users can query the full dependency configuration of installed packages.


```
Expand dependencies with spack find -d
```

```
$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4
                                              -- linux-x86_64 / gcc@4.9.2
xv2clz2
           callpath@1.0.2
                                              udltshs
                                                         callpath@1.0.2
ckjazss
               ^adept-utils@1.0.1
                                              rfsu7fb
                                                              ^adept-utils@1.0.1
3ws43m4
                   ^boost@1.59.0
                                              vbet64v
                                                                  ^boost@1.55.0
ft7znm6
                                                                  ^mpich@3.1.4
                   ^mpich@3.1.4
                                              aa4ar6i
               ^dyninst@8.2.1
                                                              ^dyninst@8.2.1
aanuet3
                                              tmnnae5
3ws43m4
                   ^boost@1.59.0
                                                                  ^boost@1.55.0
                                              vbet64v
a65rdud
                   ^libdwarf@20130729
                                              q2mxrl2
                                                                  ^libdwarf@20130729
                       ^libelf@0.8.13
ci5p5fk
                                              vnpai3i
                                                                      ^libelf@0.8.13
                   ^libelf@0.8.13
                                                                  ^libelf@0.8.13
ci5p5fk
                                              ynpai3j
a65rdud
               ^libdwarf@20130729
                                                              ^libdwarf@20130729
                                              q2mxrl2
                   ^libelf@0.8.13
                                                                  ^libelf@0.8.13
ci5p5fk
                                              vnpai3i
ci5p5fk
               ^libelf@0.8.13
                                              vnpai3i
                                                              ^libelf@0.8.13
                                                              ^mpich@3.1.4
ft7znm6
               ^mpich@3.1.4
                                              aa4ar6i
```

Architecture, compiler, and dependency versions may differ between builds.

Use Case 2: Package Views for HPC Center Installs

```
spack/opt/
    linux-x86_64/
        gcc-4.7.2/
        mpileaks-1.1-0f54bf34cadk/
        intel-14.1/
            hdf5-1.8.15-lkf14aq3nqiz/
        bgq/
        xl-12.1/
        hdf5-1-8.16-fqb3a15abrwx/
        ...
```



```
/software/
linux-x86_64/
gcc-4.7.2/
mvapich-1.9/
mpileaks-1.1/
intel-14.1/
mvapich-1.9/
hdf5-1.8.15/
bgq/
xl-12.1/
ibm-mpi/
hdf5-1-8.16/
```

- Many users like to navigate a readable directory hierarchy
 - Spack's combinatorial package space is large and can be hard to navigate
- Spack can generate a coarser tree view of symbolic links
 - View is a projection from the higher-dimensional Spack space
 - Some names may conflict, but spec syntax allows us to express preferences to guide view creation.

Use case 3: Python and other interpreted languages

```
$ spack install python@2.7.10
==> Building python.
==> Successfully installed python.
 Fetch: 5.01s. Build: 97.16s. Total: 103.17s.
[+] /home/gamblin2/spack/opt/spack/linux-x86_64/qcc-4.9.2/python-2.7.10-y2zr767
$ spack extensions python@2.7.10
==> python@2.7.10%gcc@4.9.2=linux-x86_64-y2zr767
==> 49 extensions:
             py-h5py
                                                                 py-setuptools
geos
                            py-numpy
                                            py-pypar
             py-ipython
                                                                 py-shiboken
libxml2
                             py-pandas
                                            py-pyparsing
             pv-libxml2
                            py-pexpect
pv-basemap
                                            py-pyqt
                                                                 py-sip
             py-lockfile
py-biopython
                                            py-pyside
                             py-pil
                                                                 py-six
py-cffi
              py-mako
                             py-pmw
                                            py-python-daemon
                                                                 py-sphinx
             py-matplotlib
py-cython
                            py-pychecker
                                           py-pytz
                                                                 py-sympy
             py-mock
                                           py-rpy2
                                                                 py-virtualenv
py-dateutil
                             py-pycparser
             py-mpi4py
                            py-pyelftools
                                           py-scientificpython
                                                                py-yapf
py-epydoc
                                            py-scikit-learn
                                                                 thrift
py-genders
              py-mx
                            py-pygments
                            py-pylint
py-anuplot
                                            py-scipy
             py-nose
==> 3 installed:
-- linux-x86 64 / acc@4.9.2 -----
py-nose@1.3.6 py-numpy@1.9.2 py-setuptools@18.1
==> None currently activated.
$ spack activate pv-numpv
==> Activated extension py-setuptools-18.1-qcc-4.9.2-ru7w3lx
==> Activated extension py-nose-1.3.6-gcc-4.9.2-vudjpwc
==> Activated extension py-numpy-1.9.2-acc@4.9.2-45hjazt
$ spack deactivate -a pv-numpv
==> Deactivated extension py-numpy-1.9.2-acc@4.9.2-45hjazt
==> Deactivated extension py-nose-1.3.6-qcc-4.9.2-vudjpwc
==> Deactivated extension py-setuptools-18.1-qcc-4.9.2-ru7w3lx
```

- Many interpreted languages have their own mechanisms for modules, e.g.:
 - Require installation into interpreter prefix
 - Breaks combinatorial versioning
- Spack installs each Python package in its own prefix
- "Activating" links an extension into the interpreter directory on demand
 - Supports .egg, merging .pth files
 - Mechanism is extensible to other languages
 - Similar to virtualenv, but Spack allows much more build customization.

Spack builds real LLNL codes

- ARES is a 1, 2, and 3-D radiation hydrodynamics code
- Spack automates the build of ARES and all of its dependencies
 - The ARES configuration shown above has 47 dependencies

ARES has used Spack to test 36 different configurations

 Nightly builds of ARES are shown at right.

4 code versions:

- (C)urrent Production
- (P)revious Production
- **(L)**ite
- (D)evelopment

		Linux	BG/Q	Cray XE6	
	MVAPICH	MVAPICH2	<i>OpenMPI</i>	BG/Q MPI	Cray MPI
GCC	CPLD			CPLD	
Intel 14	CPLD				
Intel 15	CPLD	D			
PGI		D	CPLD		CLD
Clang	CPLD			CLD	
XL				CPLD	

- Learning Spack and porting all libraries took a single developer 2 months, half-time.
- Previously, the team was only able to automate its development Linux builds.
 - Spack enabled thorough testing of many more configurations
 - Testing with Spack helped find compilation issues when using Clang compiler.
- Spack is helping the team port to LANL's new Trinity (Cray XC-40) machine

Build automation allows tedious work to be leveraged.

- Spack enables teams to share work.
 - Archives common library build recipes.
 - Prevents duplication of build effort.
 - We can share builds among LC, code teams, and users
- Patches allow rapid deployment of bug fixes
 - App team porting a library may not own its repo.
 - Library teams may not have time to fix issues quickly.
 - Code teams can fix quickly, then feed back changes.
- Python allowed quick adoption by code teams.
 - Many app developers already know Python
 - Spec syntax provides extra expressiveness.

Get Involved with Spack!

github.com/LLNL/spack

- 20+ organizations
 39 contributors
 Sharing 320+ packages and growing
- Spack can be a central repository for tools
 - Make it easy for others to use them!
- Spack is used in production at LLNL
 - Livermore Computing, ARES, MARBL, others.
- Spack has a rapidly growing community.
 - NERSC using Spack on Cori: Cray support.
 - ANL is using Spack on their Linux clusters.
 - ORNL working with us on Spack for CORAL.
 - EPFL (Switzerland) contributing core features.
 - Kitware: ParaView, other core features.

Coming soon: Compiler parameter studies

```
$ spack install ares cflags='-03 -g -fast -fpack-struct'
```

- This would install ARES with the specified flags
 - Flags are injected via Spack's compiler wrappers.
- Flags are propagated to dependencies automatically
 - Flags are included in the DAG hash
 - Each build is considered a different version
- This provides an easy harness for doing parameter studies for tuning codes
 - Previously working with large codes was very tedious.

Spack provides hooks that enable tools to work with large codes.

Future direction: Compiler wrappers for tools

- Automatically adding source instrumentation to large codes is difficult
 - Usually requires a lot of effort, especially if libraries need to be instrumented as well.
- Spack could support Klocwork, Scalasca, TAU, thread sanitizers like archer, and others as "secondary" compiler wrappers.
 - Allow user to build many instrumented versions of large codes, with many different compilers:

```
spack install application@3.3 %gcc@4.7.3 +archer
```

- Spack packages again provide a general interface to build details.
- LLNL ARCHER debugging tool is looking into using this.
 - Uses LLVM for instrumentation; needs to cover code and all libraries.

Future direction: Dependencies on compiler features

- Profusion of new compiler features frequently causes build confusion:
 - C++11 feature support
 - OpenMP language levels
 - CUDA compute capabilities
- Spack could allow packages to request compiler features like dependencies:

```
require('cxx11-lambda')
require('openmp@4:')
```

- Spack could:
 - 1. Ensure that a compiler with these features is used
 - 2. Ensure consistency among compiler runtimes in the same DAG.