
LLNL-PRES-806064
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

github.com/LLNL/spack	

Spack	
A	flexible	package	manager	for	HPC	

Overview	&	Introduc0on	to	Basic	Spack	Concepts	
Todd	Gamblin	

Center	for	Applied	Scien0fic	Compu0ng	

LLNL-PRES-806064
2	github.com/LLNL/spack	

§  How	to	install	Spack:	

	

§  How	to	install	a	package:	

§  HDF5	and	its	dependencies	are	installed		
within	the	Spack	directory.	

§  No	addi0onal	setup	required!	

Spack	is	a	flexible	package	manager	for	HPC	

Get	Spack!	
hAp://github.com/LLNL/spack	

$	git	clone	https://github.com/scalability-llnl/spack.git	

$	cd	spack/bin	
$./spack	install	hdf5

LLNL-PRES-806064
3	github.com/LLNL/spack	

§  Someone’s	home	directory?	

§  LLNL?	LANL?	Sandia?	ANL?	LBL?	TACC?	
—  Environments	at	large-scale	sites	are	very	different.	

§  Which	MPI	implementa0on?	

§  Which	compiler?	

§  Which	dependencies?	

§  Which	versions	of	dependencies?	
—  Many	applica0ons	require	specific	dependency	versions.	

What	is	the	producEon	environment	for	HPC?	

Real answer: there isn’t a single production environment or a standard way to build.

LLNL-PRES-806064
4	github.com/LLNL/spack	

§  Not	much	standardiza0on	in	HPC	
—  every	machine/applica0on	has	a	different	so[ware	stack	

§  Sites	share	unique	hardware	among	teams	with	very	different	requirements	
—  Users	want	to	experiment	with	many	exo0c	architectures,	compilers,	MPI	versions	
—  All	of	this	is	necessary	to	get	the	best	performance	

§  Example	environment	for	some	LLNL	codes:	

HPC	soHware	is	becoming	increasingly	complex	

48 third party packages 3 MPI versions
mvapich mvapich2 OpenMPI

x 3-ish Platforms
Linux BlueGene Cray

x

Up to 7 compilers
Intel GCC XLC Clang

PGI Cray Pathscale
x Oh, and 2-3 versions of

each package x = ~7,500 combinations

We want an easy way to quickly sample the space, to build configurations on demand!

LLNL-PRES-806064
5	github.com/LLNL/spack	

§  Tradi0onal	binary	package	managers	
—  RPM,	yum,	APT,	yast,	etc.	
—  Designed	to	manage	a	single	stack.	
—  Install	one	version	of	each	package	in	a	single	prefix	(/usr).	
—  Seamless	upgrades	to	a	stable,	well	tested	stack	

§  Port	systems	
—  BSD	Ports,	portage,	Macports,	Homebrew,	Gentoo,	etc.	
—  Minimal	support	for	builds	parameterized	by	compilers,	dependency	versions.	

§  Virtual	Machines	and	Linux	Containers	(Docker)	
—  Containers	allow	users	to	build	environments	for	different	applica0ons.	
—  Does	not	solve	the	build	problem	(someone	has	to	build	the	image)	
—  Performance,	security,	and	upgrade	issues	prevent	widespread	HPC	deployment.	

Most	exisEng	tools	do	not	support	combinatorial	versioning	

LLNL-PRES-806064
6	github.com/LLNL/spack	

§  Each	unique	dependency	graph	is	a	unique	
configura.on.	

§  Each	configura0on	installed	in	a	unique	directory.	
—  Configura0ons	of	the	same	package	can	coexist.	

§  Hash	of	en0re	directed	acyclic	graph	(DAG)	is	
appended	to	each	prefix.		

§  Installed	packages	automa0cally	find	dependencies	
—  Spack	embeds	RPATHs	in	binaries.	
—  No	need	to	use	modules	or	set	LD_LIBRARY_PATH	
—  Things	work	the	way	you	built	them	

Spack	handles	combinatorial	soHware	complexity.	

spack/opt/ !
 linux-x86_64/ !
 gcc-4.7.2/ !
 mpileaks-1.1-0f54bf34cadk/ !
 intel-14.1/ !
 hdf5-1.8.15-lkf14aq3nqiz/ !
 bgq/ !
 xl-12.1/ !
 hdf5-1-8.16-fqb3a15abrwx/ !
 ... !

mpileaks

mpi

callpath dyninst

libdwarf

libelf

InstallaEon	Layout	

Dependency	DAG	

Hash	

LLNL-PRES-806064
7	github.com/LLNL/spack	

`spack	list`	shows	what	packages	are	available	

$ spack list
==> 308 packages.
activeharmony cfitsio fftw gsl libffi matio ompt-openmp py-basemap py-pil py-virtualenv szip
adept-utils cgal fish gtkplus libgcrypt mbedtls opari2 py-biopython py-pillow py-wheel tar
apex cgm flex harfbuzz libgd memaxes openblas py-blessings py-pmw py-yapf task
arpack cityhash fltk hdf libgpg-error mesa openmpi py-cffi py-pychecker python taskd
asciidoc cleverleaf flux hdf5 libjpeg-turbo metis openspeedshop py-coverage py-pycparser qhull tau
atk cloog fontconfig hpx5 libjson-c Mitos openssl py-cython py-pyelftools qt tcl
atlas cmake freetype hwloc libmng mpc otf py-dateutil py-pygments qthreads texinfo
atop cmocka gasnet hypre libmonitor mpe2 otf2 py-epydoc py-pylint R the_silver_searcher
autoconf coreutils gcc icu libNBC mpfr pango py-funcsigs py-pypar ravel thrift
automaded cppcheck gdb icu4c libpciaccess mpibash papi py-genders py-pyparsing readline tk
automake cram gdk-pixbuf ImageMagick libpng mpich parallel-netcdf py-gnuplot py-pyqt rose tmux
bear cscope geos isl libsodium mpileaks paraver py-h5py py-pyside rsync tmuxinator
bib2xhtml cube gflags jdk libtiff mrnet paraview py-ipython py-pytables ruby trilinos
binutils curl ghostscript jemalloc libtool mumps parmetis py-libxml2 py-python-daemon SAMRAI uncrustify
bison czmq git jpeg libunwind munge parpack py-lockfile py-pytz samtools util-linux
boost damselfly glib judy libuuid muster patchelf py-mako py-rpy2 scalasca valgrind
bowtie2 dbus glm julia libxcb mvapich2 pcre py-matplotlib py-scientificpython scorep vim
boxlib docbook-xml global launchmon libxml2 nasm pcre2 py-mock py-scikit-learn scotch vtk
bzip2 doxygen glog lcms libxshmfence ncdu pdt py-mpi4py py-scipy scr wget
cairo dri2proto glpk leveldb libxslt ncurses petsc py-mx py-setuptools silo wx
caliper dtcmp gmp libarchive llvm netcdf pidx py-mysqldb1 py-shiboken snappy wxpropgrid
callpath dyninst gmsh libcerf llvm-lld netgauge pixman py-nose py-sip sparsehash xcb-proto
cblas eigen gnuplot libcircle lmdb netlib-blas pkg-config py-numexpr py-six spindle xerces-c
cbtf elfutils gnutls libdrm lmod netlib-lapack pmgr_collective py-numpy py-sphinx spot xz
cbtf-argonavis elpa gperf libdwarf lua netlib-scalapack postgresql py-pandas py-sympy sqlite yasm
cbtf-krell expat gperftools libedit lwgrp nettle ppl py-pbr py-tappy stat zeromq
cbtf-lanl extrae graphlib libelf lwm2 ninja protobuf py-periodictable py-twisted sundials zlib
cereal exuberant-ctags graphviz libevent m4 ompss py-astropy py-pexpect py-urwid swig zsh

LLNL-PRES-806064
8	github.com/LLNL/spack	

§  Each	expression	is	a	spec	for	a	par0cular	configura0on	
—  Each	clause	adds	a	constraint	to	the	spec	
—  Constraints	are	op0onal	–	specify	only	what	you	need.	
—  Customize	install	on	the	command	line!	

§  Syntax	abstracts	details	in	the	common	case	
—  Makes	parameteriza0on	by	version,	compiler,	and	op0ons	easy	when	necessary	

Spack	provides	a	spec	syntax	to	describe	customized	DAG	
configuraEons	

$ spack install mpileaks unconstrained !
!
$ spack install mpileaks@3.3 @ custom version !
!
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler!
!
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option!
!
$ spack install mpileaks@3.3 =bgq = cross-compile!

LLNL-PRES-806064
9	github.com/LLNL/spack	

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§  Spack	ensures	one	configura0on	of	each	library	per	DAG	
—  Ensures	ABI	consistency.	
—  User	does	not	need	to	know	DAG	structure;	only	the	dependency	names.	

§  Spack	can	ensure	that	builds	use	the	same	compiler,	or	you	can	mix	
—  Working	on	ensuring	ABI	compa0bility	when	compilers	are	mixed.	

Spack	Specs	can	constrain	versions	of	dependencies	

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12!

LLNL-PRES-806064
10	github.com/LLNL/spack	

Spack	handles	ABI-incompaEble,	versioned	interfaces	like	MPI	

$ spack install mpileaks ^mvapich@1.9 ! $ spack install mpileaks ^openmpi@1.4: !

$ spack install mpileaks ^mpi@2 !

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§  mpi	is	a	virtual	dependency	

§  Install	the	same	package	built	with	two	different	MPI	implementa0ons:	

§  Let	Spack	choose	MPI	version,	as	long	as	it	provides	MPI	2	interface:	

LLNL-PRES-806064
11	github.com/LLNL/spack	

$	spack	edit	dyninst	

This opens the dyninst package in $EDITOR

Spack	packages	are	simple	Python	scripts.	

from spack import *

class Dyninst(Package):
 """API for dynamic binary instrumentation.""”

 homepage = "https://paradyn.org"

 version('8.2.1', 'abf60b7faabe7a2e’, url="http://www.paradyn.org/release8.2/DyninstAPI-8.2.1.tgz")
 version('8.1.2', 'bf03b33375afa66f’, url="http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz")
 version('8.1.1', 'd1a04e995b7aa709’, url="http://www.paradyn.org/release8.1/DyninstAPI-8.1.1.tgz")

 depends_on("libelf")
 depends_on("libdwarf")
 depends_on("boost@1.42:")

 def install(self, spec, prefix):
 libelf = spec['libelf'].prefix
 libdwarf = spec['libdwarf'].prefix

 with working_dir('spack-build', create=True):
 cmake('..',
 '-DBoost_INCLUDE_DIR=%s' % spec['boost'].prefix.include,
 '-DBoost_LIBRARY_DIR=%s' % spec['boost'].prefix.lib,
 '-DBoost_NO_SYSTEM_PATHS=TRUE’
 *std_cmake_args)
 make()
 make("install")

 @when('@:8.1')
 def install(self, spec, prefix):
 configure("--prefix=" + prefix)
 make()
 make("install")

Metadata

Versions and URLs

Commands for installation

Access build config through
the spec parameter.

Dependencies
Patches, variants (not shown)

LLNL-PRES-806064
12	github.com/LLNL/spack	

§  The	user	can	define	named	variants	(flags):	

§  And	use	them	to	install:	

	

§  Dependencies	may	be	op0onal	according	to	other	condi0ons:	
e.g.,	gcc	dependency	on	mpc	from	4.5	on:	

	

§  DAG	is	not	always	complete	before	concre0za0on!	

Variants	allow	opEonal	dependencies	

 variant("python", default=False, “Build with python support”)
 depends_on("python", when="+python")

 depends_on("mpc", when="@4.5:")

$ spack install vim +python
$ spack install vim –python

LLNL-PRES-806064
13	github.com/LLNL/spack	

ConcreEzaEon	fills	in	missing	configuraEon	details	
when	the	user	is	not	explicit.	

mpileaks ^callpath@1.0+debug ^libelf@0.8.11! User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
 variants: {}
 version: '1.0'
- adept-utils:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 variants: {}
 version: 1.0.1
- boost:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies: {}
 hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
 variants: {}
 version: 1.59.0
...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
14	github.com/LLNL/spack	

Spack	builds	each	package	in	its	own	compilaEon	environment	

Spack	
Process	

Set	up	environment	

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package …

Build		
Process	

Fork

install() configure	 make	 make	install	

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler	wrappers	(cc, c++, f77, f90)	

icc	 icpc	 ifort	

§  Forking	build	process	isolates	environment	for	each	build.	

§  Compiler	wrappers	add	include,	lib,	and	RPATH	flags	
—  Ensure	that	dependencies	are	found	automa0cally	

LLNL-PRES-806064
15	github.com/LLNL/spack	

§  spack find	shows	all	
installed	configura0ons	
—  Mul0ple	versions	of	

same	package	are	ok.	

§  Packages	are	divided	by	
architecture/compiler.	

§  Spack	also	generates	
module	files.	
—  Don’t	have	to	use	them.	

Use	Case	1:	Managing	combinatorial	installaEons	

$ spack find
==> 103 installed packages.
-- linux-x86_64 / gcc@4.4.7 --------------------------------
ImageMagick@6.8.9-10 glib@2.42.1 libtiff@4.0.3 pango@1.36.8 qt@4.8.6
SAMRAI@3.9.1 graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3 qt@5.4.0
adept-utils@1.0 gtkplus@2.24.25 libxcb@1.11 pixman@0.32.6 ravel@1.0.0
atk@2.14.0 harfbuzz@0.9.37 libxml2@2.9.2 py-dateutil@2.4.0 readline@6.3
boost@1.55.0 hdf5@1.8.13 llvm@3.0 py-ipython@2.3.1 scotch@6.0.3
cairo@1.14.0 icu@54.1 metis@5.1.0 py-nose@1.3.4 starpu@1.1.4
callpath@1.0.2 jpeg@9a mpich@3.0.4 py-numpy@1.9.1 stat@2.1.0
dyninst@8.1.2 libdwarf@20130729 ncurses@5.9 py-pytz@2014.10 xz@5.2.0
dyninst@8.1.2 libelf@0.8.13 ocr@2015-02-16 py-setuptools@11.3.1 zlib@1.2.8
fontconfig@2.11.1 libffi@3.1 openssl@1.0.1h py-six@1.9.0
freetype@2.5.3 libmng@2.0.2 otf@1.12.5salmon python@2.7.8
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0

-- linux-x86_64 / gcc@4.8.2 --------------------------------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2

-- linux-x86_64 / intel@14.0.2 -----------------------------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4

-- linux-x86_64 / intel@15.0.0 -----------------------------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4

-- linux-x86_64 / intel@15.0.1 -----------------------------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4

LLNL-PRES-806064
16	github.com/LLNL/spack	

§  Querying	by	package	name	
retrieves	a	subset	

Using	the	Spec	syntax,	Spack	can	restrict	queries	

$ spack find mpich
==> 5 installed packages.
-- linux-x86_64 / gcc@4.4.7 --------------------------------
mpich@3.0.4

-- linux-x86_64 / gcc@4.8.2 --------------------------------
mpich@3.0.4

-- linux-x86_64 / intel@14.0.2 -----------------------------
mpich@3.0.4

-- linux-x86_64 / intel@15.0.0 -----------------------------
mpich@3.0.4

-- linux-x86_64 / intel@15.0.1 -----------------------------
mpich@3.0.4

LLNL-PRES-806064
17	github.com/LLNL/spack	

The	Spec	syntax	doubles	as	a	query	language	to	allow	
refinement	of	searches.	
$ spack find libelf
==> 5 installed packages.
-- linux-x86_64 / gcc@4.4.7 ---------
libelf@0.8.12 libelf@0.8.13

-- linux-x86_64 / gcc@4.8.2 ---------
libelf@0.8.13

-- linux-x86_64 / intel@15.0.0 ------
libelf@0.8.13

-- linux-x86_64 / intel@15.0.1 ------
libelf@0.8.13

Query versions of libelf package

$ spack find libelf %intel@15.0.1
-- linux-x86_64 / intel@15.0.1 ------
libelf@0.8.13

Restrict to specific compiler version

List only those built with Intel compiler.
$ spack find libelf %intel
-- linux-x86_64 / intel@15.0.0 ------
libelf@0.8.13

-- linux-x86_64 / intel@15.0.1 ------
libelf@0.8.13

LLNL-PRES-806064
18	github.com/LLNL/spack	

Users	can	query	the	full	dependency	configuraEon		
of	installed	packages.	

§  Architecture,	compiler,	and	dependency	versions	may	differ	between	builds.	

$ spack find callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ———————— -- linux-x86_64 / gcc@4.9.2 -------------
callpath@1.0.2 callpath@1.0.2

Expand dependencies
with spack find -d

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

LLNL-PRES-806064
19	github.com/LLNL/spack	

§  Many	users	like	to	navigate	a	readable	directory	hierarchy	
—  Spack’s	combinatorial	package	space	is	large	and	can	be	hard	to	navigate	

§  Spack	can	generate	a	coarser	tree	view	of	symbolic	links	
—  View	is	a	projec0on	from	the	higher-dimensional	Spack	space	
—  Some	names	may	conflict,	but	spec	syntax	allows	us	to	express	preferences	to	guide	view	crea0on.	

Use	Case	2:	Package	Views	for	HPC	Center	Installs	

spack/opt/ !
 linux-x86_64/ !
 gcc-4.7.2/ !
 mpileaks-1.1-0f54bf34cadk/ !
 intel-14.1/ !
 hdf5-1.8.15-lkf14aq3nqiz/ !
 bgq/ !
 xl-12.1/ !
 hdf5-1-8.16-fqb3a15abrwx/ !
 ... !

/software/ !
 linux-x86_64/ !
 gcc-4.7.2/ !
 mvapich-1.9/ !
 mpileaks-1.1/ !
 intel-14.1/ !
 mvapich-1.9/ !
 hdf5-1.8.15/ !
 bgq/ !
 xl-12.1/ !
 ibm-mpi/ !
 hdf5-1-8.16/ !
 ... !

LLNL-PRES-806064
20	github.com/LLNL/spack	

§  Many	interpreted	languages	have	their	
own	mechanisms	for	modules,	e.g.:	
—  Require	installa0on	into	interpreter	prefix	
—  Breaks	combinatorial	versioning	

§  Spack	installs	each	Python	package	in	its	
own	prefix	

§  “Ac0va0ng”	links	an	extension	into	the	
interpreter	directory	on	demand	
—  Supports	.egg,	merging	.pth	files	
—  Mechanism	is	extensible	to	other	languages	
—  Similar	to	virtualenv,	but	Spack	allows	

much	more	build	customiza0on.	

Use	case	3:	Python	and	other	interpreted	languages	
$ spack install python@2.7.10
==> Building python.
==> Successfully installed python.
 Fetch: 5.01s. Build: 97.16s. Total: 103.17s.
[+] /home/gamblin2/spack/opt/spack/linux-x86_64/gcc-4.9.2/python-2.7.10-y2zr767

$ spack extensions python@2.7.10
==> python@2.7.10%gcc@4.9.2=linux-x86_64-y2zr767
==> 49 extensions:
geos py-h5py py-numpy py-pypar py-setuptools
libxml2 py-ipython py-pandas py-pyparsing py-shiboken
py-basemap py-libxml2 py-pexpect py-pyqt py-sip
py-biopython py-lockfile py-pil py-pyside py-six
py-cffi py-mako py-pmw py-python-daemon py-sphinx
py-cython py-matplotlib py-pychecker py-pytz py-sympy
py-dateutil py-mock py-pycparser py-rpy2 py-virtualenv
py-epydoc py-mpi4py py-pyelftools py-scientificpython py-yapf
py-genders py-mx py-pygments py-scikit-learn thrift
py-gnuplot py-nose py-pylint py-scipy

==> 3 installed:
-- linux-x86_64 / gcc@4.9.2 ------------------------------------
py-nose@1.3.6 py-numpy@1.9.2 py-setuptools@18.1

==> None currently activated.

$ spack activate py-numpy
==> Activated extension py-setuptools-18.1-gcc-4.9.2-ru7w3lx
==> Activated extension py-nose-1.3.6-gcc-4.9.2-vudjpwc
==> Activated extension py-numpy-1.9.2-gcc@4.9.2-45hjazt

$ spack deactivate -a py-numpy
==> Deactivated extension py-numpy-1.9.2-gcc@4.9.2-45hjazt
==> Deactivated extension py-nose-1.3.6-gcc-4.9.2-vudjpwc
==> Deactivated extension py-setuptools-18.1-gcc-4.9.2-ru7w3lx

LLNL-PRES-806064
21	github.com/LLNL/spack	

§  ARES	is	a	1,	2,	and	3-D	radia0on	hydrodynamics	code	

§  Spack	automates	the	build	of	ARES	and	all	of	its	dependencies	
—  The	ARES	configura0on	shown	above	has	47	dependencies	

Spack	builds	real	LLNL	codes	

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

LLNL-PRES-806064
22	github.com/LLNL/spack	

ARES	has	used	Spack	to	test	36	different	configuraEons	

§  Nightly builds of ARES are
shown at right.
4 code versions:
•  (C)urrent Production
•  (P)revious Production
•  (L)ite
•  (D)evelopment

§  Learning Spack and porting all libraries took a single developer 2 months, half-time.

§  Previously, the team was only able to automate its development Linux builds.
•  Spack enabled thorough testing of many more configurations
•  Testing with Spack helped find compilation issues when using Clang compiler.

§  Spack is helping the team port to LANL’s new Trinity (Cray XC-40) machine

parameter is not part of the link. To keep package installations
consistent and reproducible, Spack has a well-defined mechanism
for resolving conflicting links; it uses a combination of internal
default policies and user- or site-defined policies to define an order
of preference for different parameters. By default, Spack prefers
newer versions of packages compiled with newer compilers to older
packages built with older compilers. It has well-defined, but not
necessarily meaningful, order of preference for deciding between
MPI implementations and different compilers. The default policies
can be overridden in configuration files, by either users or by sites.
For example, at one site users may typically use the Intel compiler,
but some users also use the system’s default gcc@4.4.7. These
preferences could be stated by adding:

compiler_order = icc,gcc@4.4.7

to the site’s configuration file, which would cause the ambiguous
mpileaks link to point to an installation compiled with icc. Any
compiler not in the compiler_order setting is treated as less preferred
than those explicitly provided. In a similar manner, Spack can be
configured to give specific package configurations priority over
others. This can be useful if a new version is unstable and untested.

4.3.2 External Package Repositories
By default, Spack stores its package files in a mainline repository

that is present when users first run Spack. At many sites, packages
may build sensitive, proprietary software, or they may have patches
that are not useful outside of a certain company or organization.
Putting this type of code back into a public repository does not often
make sense, and if it makes the mainline less stable, it can actually
make sharing code between sites more difficult.

To support our own private packages, and to support those of
LLNL code teams, Spack allows the creation of site-specific variants
of packages. Via configuration files, users can specify additional
search directories for finding additional Package classes. The addi-
tional packages are like the mpileaks package shown in Figure 1.
However, the extension packages can extend from not only Package,
but also any of Spack’s built-in packages. Custom packages can
inherit from and replace Spack’s default packages, so other sites can
either tweak or completely replace Spack’s build recipes. To con-
tinue the previous example, a site can write a LocalSpindle Python
class, which inherits from Spack’s Spindle class. LocalSpindle
may simply add additional configure flags to the Spindle class,
while leaving the dependencies and most of the build instructions
from its parent class. For reproducibility, Spack also tracks the
Package class that drove a specific build.

4.4 The ARES Multi-physics Code
For our final use case, we describe our experiences using Spack

to build ARES. ARES [9, 31] is a 1, 2 and 3-dimensional radiation
hydrodynamics code, developed for production use at LLNL. It can
run both small, serial and large, massively parallel jobs. ARES
is used primarily in munitions modeling and inertial confinement
fusion simulations. At LLNL, it runs on commodity Linux clusters
and on Blue Gene/Q systems. It also runs on the Cielo Cray XE6
system at Los Alamos National Laboratory (LANL), and it is be-
ing ported to LANL’s forthcoming Trinity Cray XC30 machine on
Trinitite, a smaller version of the full system. The Trinity machine
will consist of two partitions; one using Intel Haswell processors
and another using Intel Knights Landing processors. Currently, only
the Haswell partition is deployed on Trinitite.

ARES comprises 47 packages, with complex dependency rela-
tionships. Figure 13 shows the DAG for the current production
configuration of ARES. At the top is ARES itself. ARES depends

Linux BG/Q Cray XE6
MVAPICH MVAPICH2 OpenMPI BG/Q MPI Cray MPI

GCC C P L D C P L D

Intel 14 C P L D

Intel 15 C P L D D

PGI D C P L D C L D

Clang C P L D C L D

XL C P L D

Table 3: Configurations of ARES built with Spack:
(C)urrent and (P)revious production, (L)ite, and (D)evelopment).

on 11 LLNL physics packages, 4 LLNL math/meshing libraries,
and 8 LLNL utility libraries. The utility libraries handle tasks in-
cluding logging, I/O, and performance measurement. ARES also
uses 23 external software packages, including MPI, BLAS, Python,
and many other libraries. Together, these packages are written in a
diverse set of languages including C, C++, Fortran, Python and tcl
and uses MPI and OpenMP for parallelism.

We have configured Spack to build ARES with external MPI
implementations, depending on the host system. This configuration
exploits the vendor- or site-supplied MPI installation that often uses
host-specific optimized network drivers. MPI is shown as a virtual
dependency in the figure, as the implementation differs according
to the host machine. ARES builds its own Python version in order
to run on machines where Python is not well supported, like Blue
Gene/Q. In particular, ARES builds a version of Python 2.7 for Blue
Gene/Q, which the native software stack does not support.

Prior to using Spack, ARES managed its software stack with
MixDown. Thus, the ARES team already had some experience
supporting automated builds of dependencies. We developed Spack
packages for the LLNL packages in Figure 13. Many of the external
packages were already available in Spack, but some, such as Python,
required modifications to support the new platforms and compilers.

Table 3 shows configurations of ARES that the ARES team tests
nightly. The rows and columns show architectures, compilers, and
MPI versions. The ARES Spack package supports four different
code configurations: the current (C) and previous (P) production
versions, a “lite” version (L) that includes a smaller set of features
and dependencies, and a development version (D). Each cell in the
table indicates the ARES configurations built for an architecture,
compiler, and MPI combination. Each configuration requires a
slightly different set of dependencies and dependency versions, but
one common ARES package supports all of them with conditional
logic on versions and variants.

Altogether, the initial packaging effort required roughly two
months for an experienced build engineer working 20 hours per
week. As shown in the table, 36 different configurations have been
run using Spack (some of 4 versions on each of 10 architecture-
compiler-MPI combinations). Prior to using Spack, only Linux/Intel
configurations were automated. The ARES team listed a number of
key features that enabled the increased automation:

1. Spack’s version tracking and optional dependencies were
required to build the four configurations with correct libraries;

2. The spec syntax allowed build scripts to concisely test com-
piler, compiler version, and dependency versions—a necessity
for handling the different architectures;

3. Patching packages for particular platforms was necessary to
build many packages; and

4. Using a DSL embedded in Python was a significant benefit;
certain packages required custom scripting to patch.

LLNL-PRES-806064
23	github.com/LLNL/spack	

Library
Teams

Livermore
Computing

Spack
Contributors Users

Code Teams

Build	automaEon	allows	tedious	work	to	be	leveraged.	

§  Spack	enables	teams	to	share	work.	
—  Archives	common	library	build	recipes.	
—  Prevents	duplica0on	of	build	effort.	
—  We	can	share	builds	among	LC,	code	teams,	and	users	

§  Patches	allow	rapid	deployment	of	bug	fixes		
—  App	team	por0ng	a	library	may	not	own	its	repo.	
—  Library	teams	may	not	have	0me	to	fix	issues	quickly.	
—  Code	teams	can	fix	quickly,	then	feed	back	changes.	

§  Python	allowed	quick	adop0on	by	code	teams.	
—  Many	app	developers	already	know	Python	
—  Spec	syntax	provides	extra	expressiveness.	

Spack

LLNL-PRES-806064
24	github.com/LLNL/spack	

§  20+	organizaEons	
39	contributors	
Sharing	320+	packages	and	growing	

§  Spack	can	be	a	central	repository	for	tools	
—  Make	it	easy	for	others	to	use	them!	

§  Spack	is	used	in	producEon	at	LLNL	
—  Livermore	Compu0ng,	ARES,	MARBL,	others.	

§  Spack	has	a	rapidly	growing	community.	
—  NERSC	using	Spack	on	Cori:	Cray	support.	
—  ANL	is	using	Spack	on	their	Linux	clusters.	
—  ORNL	working	with	us	on	Spack	for	CORAL.	
—  EPFL	(Switzerland)	contribu0ng	core	features.	
—  Kitware:	ParaView,	other	core	features.	

Get	Involved	with	Spack!	 github.com/LLNL/spack	

LLNL-PRES-806064
26	github.com/LLNL/spack	

Coming	soon:	Compiler	parameter	studies	

$	spack	install	ares	cflags=‘-O3	–g	–fast	–fpack-struct’	

§  This	would	install	ARES	with	the	specified	flags	
—  Flags	are	injected	via	Spack’s	compiler	wrappers.	

§  Flags	are	propagated	to	dependencies	automa0cally	
—  Flags	are	included	in	the	DAG	hash	
—  Each	build	is	considered	a	different	version	

§  This	provides	an	easy	harness	for	doing	parameter	studies	for	tuning	codes	
—  Previously	working	with	large	codes	was	very	tedious.	

Spack provides hooks that enable tools to work with large codes.

LLNL-PRES-806064
27	github.com/LLNL/spack	

§  AutomaEcally	adding	source	instrumentaEon	to	large	codes	is	difficult	
—  Usually	requires	a	lot	of	effort,	especially	if	libraries	need	to	be	instrumented	as	well.	

§  Spack	could	support	Klocwork,	Scalasca,	TAU,	thread	saniEzers	like	archer,	and	others	
as	“secondary”	compiler	wrappers.	
—  Allow	user	to	build	many	instrumented	versions	of	large	codes,	with	many	different	compilers:	
	
	
	

§  Spack	packages	again	provide	a	general	interface	to	build	details.	

§  LLNL	ARCHER	debugging	tool	is	looking	into	using	this.	
—  Uses	LLVM	for	instrumenta0on;	needs	to	cover	code	and	all	libraries.	

Future	direcEon:	Compiler	wrappers	for	tools	

spack install application@3.3 %gcc@4.7.3 +archer !

LLNL-PRES-806064
28	github.com/LLNL/spack	

§  Profusion	of	new	compiler	features	frequently	causes	build	confusion:	
—  C++11	feature	support	
—  OpenMP	language	levels	
—  CUDA	compute	capabili0es	

§  Spack	could	allow	packages	to	request	compiler	features	like	dependencies:	

	

§  Spack	could:	
1.  Ensure	that	a	compiler	with	these	features	is	used	
2.  Ensure	consistency	among	compiler	run0mes	in	the	same	DAG.	

Future	direcEon:	Dependencies	on	compiler	features	

require(‘cxx11-lambda’) !
require(‘openmp@4:’) !

